Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

Современные электромеханические преобразователи, несмотря на высокую эффективность, все же не обходятся без некоторых потерь энергии, как магнитной, так и электрической и механической. Эти потери сопровождаются выделением тепла, усилением шума и вибрации, которые обусловлены неизбежным трением элементов, перемагничиванием в магнитном поле сердечника якоря электродвигателя, а также скачками нагрузок.

В связи с этим возникает вопрос: можно ли снизить такие "утечки" и, в итоге, повысить коэффициент полезного действия системы? Если да, то как это достичь? Для ответа на эти вопросы мы и подготовили данную статью.

Повышение КПД асинхронных двигателей становится все более актуальной задачей в современной электротехнике. Согласно определению, электрические машины бывают синхронными и асинхронными. Синхронные машины характеризуются одинаковой частотой вращения ротора и магнитного поля. В то время как у асинхронных машин магнитное поле вращается с более высокой скоростью, чем ротор. Большинство (около 90%) двигателей в мире являются асинхронными, в связи с их простотой в изготовлении, надежностью, доступной ценой и низкими эксплуатационными затратами. Кроме того, КПД асинхронных двигателей значительно выше, чем у синхронных.

Однако у асинхронных двигателей также имеются некоторые недостатки. Высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой - все эти факторы приводят к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске, а также снижению КПД в периоды пониженной нагрузки. К тому же, точная регулировка скорости работы прибора также не является возможной.

Существуют различные подходы к повышению КПД асинхронных двигателей. Некоторые из них включают улучшение обмотки на статоре, использование систем управления частотой и высотой напряжения, а также измельчения материала магнитного ядра внутри машины. Кроме того, применение технологии вариации скорости постоянного тока с использованием системы бесконтактной передачи энергии является возможным способом повышения КПД асинхронных двигателей.

Таким образом, повышение КПД асинхронных двигателей - важная задача для современной электротехники. Существуют различные подходы к решению этой задачи, каждый из которых имеет свои преимущества и ограничения.

Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.

Ценовая политика

Контроллеры-оптимизаторы являются эффективным средством увеличения КПД оборудования и в то же время они значительно более доступны по цене, чем преобразователи. По сравнению со своими аналогами, устройства от отечественных производителей обладают ценовым преимуществом: устройство мощностью 90 кВт можно приобрести по цене от 90 до 140 тысяч рублей.

Достоинства и недостатки контроллеров-оптимизаторов

Контроллеры-оптимизаторы могут быстро реагировать на изменение напряжения, что снижает расходы электроэнергии на 30–40%, сокращает влияние реактивной нагрузки на сеть, повышает КПД привода, позволяет сократить расходы на конденсаторные компенсирующие устройства, а также продлевает срок службы оборудования и повышает экологичность производства. Отличительной особенностью контроллеров также является более доступная цена по сравнению с преобразователями частоты.

Однако стоит отметить, что контроллеры-оптимизаторы имеют ограничение в использовании в тех случаях, когда необходимо изменять скорость вращения электродвигателя. Таким образом, при выборе контроллера следует учитывать этот момент и выбирать оптимальный вариант, учитывая конкретную ситуацию и потребности.

Как правильно выбрать устройство, способное повысить КПД оборудования? Дело в том, что выбор определенного электропривода зависит от того, как он работает. Нужно понимать, что если необходимо изменять скорость привода, то здесь единственно верным выбором будет преобразователь частоты. Но если скорость вращения двигателя не изменяется или это не является целями, то более доступным решением будет использовать контроллеры-оптимизаторы. Такие устройства обойдутся значительно дешевле, чем преобразователи частоты.

Ключевыми факторами, влияющими на КПД электродвигателя, является несколько факторов, включая степень его загрузки относительно номинальной, конструкцию, модель, износ, а также отклонение напряжения в сети от номинального значения. Не стоит забывать, что после перемотки КПД электродвигателя может снизиться. Для более эффективной работы электропривода рекомендуется обеспечивать минимальную загрузку не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту питающего тока. Повышение КПД двигателя может быть достигнуто с помощью специального оборудования, однако не всегда нужно или возможно реализовать все эти меры.

Для улучшения КПД используются различные приборы, в том числе частотные преобразователи, которые изменяют скорость двигателя, изменяя частоту питающего напряжения. Также используются устройства плавного пуска, которые ограничивают скорость нарастания пускового тока и его максимальное значение. В этой статье мы сравним современные решения для повышения КПД двигателей на основе эффективности работы и экономической целесообразности.

Частотные преобразователи используются для улучшения работы асинхронных двигателей. Они способны изменять однофазное или трехфазное напряжение с частотой 50 Гц, превращая его в напряжение с настраиваемой частотой, которая обычно варьируется от 1 до 300-400 Гц, но может достигать и 3000 Гц. Более того, преобразователи регулируют также амплитуду напряжения. Это позволяет добиться значительного повышения эффективности работы электродвигателя.

Преобразователь частоты, известный также как «частотник», содержит в себе микропроцессор для управления электронными ключами и защиты оборудования, а также схемы, которые работают в качестве ключей и открывают тиристоры или транзисторы. Тиристорные преобразователи частоты более эффективны благодаря способности работать с высокими напряжениями и токами и достигать КПД до 98%, но это преимущество становится практически незаметным при небольших мощностях.

Существуют два класса преобразователей частоты, которые отличаются устройством и принципами работы:

  • Преобразователи с непосредственной связью представляют собой выпрямители. В результате отпирания тиристоров и подключения обмотки к сети формируется выходное напряжение с ограниченным диапазоном управления скоростью вращения привода и частотой 0–30 Гц. Однако такие преобразователи не подходят для оснащения мощного оборудования, регулирующего множество технологических параметров.
  • Преобразователи с промежуточным звеном постоянного тока производят двойное преобразование энергии: входное напряжение выпрямляется, затем фильтруется и сглаживается, а потом при помощи инвертора снова трансформируется в напряжение с необходимой амплитудой и частотой. Хотя такое преобразование может снижать КПД оборудования, преобразователи частоты второго типа имеют широкое применение благодаря способности давать на выходе напряжение с высокой частотой.

Одним из наиболее популярных типов преобразователей частоты являются устройства второго типа, которые обеспечивают плавную регулировку оборотов двигателей.

Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.

Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.

Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.

При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.

Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.

Недавно финансисты отметили, что стоимость "частотников" является очень волатильной. За год-полтора цены на эти устройства значительно увеличились. В настоящее время колебания валютного курса являются одной из причин такого явления. В 2021 году частотные преобразователи производства как России, так и других стран, мощностью 90 кВт, могли обойтись покупателям примерно в 200—700 тысяч рублей.

Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.

Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.

Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.

Контроллеры-оптимизаторы: решение задач плавного пуска

Устройства плавного пуска (УПП) необходимы для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не учитывают потребление электроэнергии, что не способствует повышению КПД. Кроме того, их можно применять только для управления приводами с небольшой нагрузкой на валу.

В настоящее время существуют новые разновидности УПП – контроллеры-оптимизаторы, позволяющие повысить энергоэффективность двигателей за счет согласования крутящего момента с моментом нагрузки и, как следствие, снижения потребления электроэнергии на минимальных нагрузках на 30–40%. Они предназначены для приводов, не требующих изменения числа оборотов двигателя.

В частности, эскалаторы потребляют большое количество электроэнергии. Для их снижения необходимо уменьшить скорость движения, но это невозможно из-за необходимости обеспечения быстрого подъема пассажиров. Контроллеры-оптимизаторы решают эту задачу, позволяя снизить энергопотребление без изменения скорости электропривода в случаях, когда он недогружен.

Контроллеры-оптимизаторы – это устройства, которые выполняют функцию регуляторов напряжения для питания электродвигателей. Они предоставляют контроль над фазами напряжения и тока, обеспечивают полное управление приводом на всех этапах работы и защищают его от повышенного и пониженного напряжения, перегрузки, обрыва или нарушения чередования фазы и т.д.

Контроллеры-оптимизаторы также согласовывают значение крутящего момента, развиваемого электродвигателем, с его нагрузкой на валу, путем изменения напряжения для питания двигателя. В процессе регулирования крутящего момента скорость вращения ротора остается прежней, а коэффициент мощности повышается. Это оборудование является функционально законченным и не требует подключения дополнительных устройств.

В период работы привода в условиях динамически изменяющихся нагрузок контроллер обеспечивает прекращение отбора мощности из сети электропитания в те моменты, когда полупроводниковые переходы тиристоров (управляемых диодов) задерживают электрический ток. Размыкание тиристоров происходит периодически при поступлении управляющих сигналов, период, задержка которых определяется относительным значением загрузки привода.

Важно помнить, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *