Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Сегодня, одним из самых популярных и инновационных направлений в IT является применение Big Data. Именно огромные массивы информации, которые, как правило, неупорядочены, и технологии по работе с ними - это термины, которые обозначают этот тренд. Открытие новых возможностей для бизнеса - главное преимущество использования Big Data. Такие компании могут предоставлять своим клиентам персонифицированные продукты и сервисы. В этом материале мы расскажем об основных технологиях анализа больших массивов данных и о том, какие пользы они могут принести.

Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.

Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.

Анализ методов хранения данных

Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.

При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.

Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.

Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.

Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.

Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.

Нейронные сети – это особый тип алгоритмов машинного обучения, который напоминает работу человеческого мозга. Они способны анализировать входные данные и выдавать требуемый результат. Применение умных нейросетей достаточно широко: они могут распознавать лица на фотографиях, а также определять недобросовестные транзакции на основе ряда признаков.

Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.

Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.

Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.

Статья о статистическом анализе

Современные технологии Big Data не только позволяют обрабатывать большие объемы данных, но и существенно улучшают точность статистических данных. Это объясняется тем, что более обширная выборка обеспечивает более точный и корректный анализ результатов.

Визуализация данных является неотъемлемой частью их анализа. Она позволяет превратить информацию в понятный и удобный для использования формат, включая графики, диаграммы, карты и гистограммы. Обычно этот этап анализа выполняется в конечной стадии, когда необходимо проиллюстрировать результаты для пользователей.

Для эффективной визуализации используются специальные инструменты Big Data, предназначенные для работы с каждым конкретным методом.

Рост объема информации, с которым мы сталкиваемся каждую секунду, стремительно ускоряется. Так, только за 2020 год пользователи сгенерировали более 60 зеттабайт (60 × 10 21 байт) данных. При этом, по прогнозам, к 2025 году подобный объем информации вырастет втрое. В связи с этим, анализ Big Data является одним из перспективных технологических направлений. Большие данные актуальны для бизнеса, науки и сферы государственного управления. Поэтому крупные компании активно инвестируют в эту область.

Какими характеристиками обладает Big Data?

Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:

1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.

2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.

3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.

С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).

Каковы плюсы использования Big Data?

Применение технологии анализа больших данных дает возможность оптимизировать бизнес-процессы, повысить производительность, улучшить качество товаров и услуг, минимизировать риски, предвидеть тенденции рынка, а также получить глубокое понимание поведения клиентов, их потребностей и интересов для более точного попадания в целевую аудиторию. К примеру, большим сферам применения Технологии Big Data были телекоммуникационные компании, банковская и розничная отрасли. Применение Big Data позволяет повысить экологические характеристики и энергоэффективность в производстве. Для продавцов это выгодно, а для покупателей - удобно.

В настоящее время технологии хранения и анализа больших данных практически неизбежны и востребованы не только в торговле, рекламе и индустрии развлечений, но и в различных сферах деятельности, включая безопасность, медицину, сельское хозяйство, промышленность, энергетику, науку и государственное управление.

Рассмотрим несколько примеров практического применения больших данных, которые имеют актуальность в разных отраслях деятельности.

Революция в фармакологии: как Big Data помогает создавать лекарства

С использованием Big Data технологические компании могут создавать интеллектуальные продукты и сервисы, способные решать принципиально новые задачи. В США, например, была разработана платформа "вычислительной биологии", которая может помочь находить и создавать лекарственные препараты, способные точно попадать в цель и быть эффективными в лечении конкретных заболеваний.

Анализ больших данных уже используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP были обнародованы данные о том, что использование Big Data в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.

Анализ больших данных применяется и в Европе, где он внедряется в сферу медицины более активно. Исследования, проведенные в этой области, показали, что с помощью анализа информации на 150 000 пациентов можно выявлять связь определенных генетических факторов с заболеваемостью раком, что помогает более эффективно диагностировать и лечить заболевания.

Таким образом, внедрение инноваций в сферу медицины с помощью анализа больших данных позволяет создавать более эффективные лекарства и повышать точность медицинских исследований, что может привести к существенному улучшению качества жизни людей.

Активное использование больших данных в маркетинге позволяет анализировать поведение клиентов, используя историю их покупок, поисковых запросов, посещений и лайков в социальных сетях. Такой подход позволяет маркетологам определить предпочтения пользователей и на основе этого предлагать им товары и услуги, которые имеют для них наибольшую ценность. С помощью Big Data можно создавать более адресную и эффективную рекламу.

Amazon был первым сервисом, который запустил систему рекомендаций, основанную на анализе пользовательских запросов. В процессе работы системы учитывались не только история покупок и поведение клиентов, но и разнообразные внешние факторы, такие как сезон или предстоящие праздники. Как результат, система рекомендаций стала отвечать за более чем треть всех продаж на платформе Amazon.

Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.

Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.

Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.

Улучшение производственных процессов с использованием Big Data

Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.

Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.

Прогнозирование с помощью обработки больших объемов данных становится все более популярным. Основная идея заключается в создании моделей и прогнозировании будущих событий и поведения людей на их основе. Такой подход способен помочь в различных сферах, таких как планирование рекламных кампаний, определение спроса на услуги и товары, а также помогать взаимодействовать с клиентами.

Преимущество использования предсказательной аналитики на основе Big Data не ограничивается только сферой маркетинга и торговли. В сфере образования, например, она может помочь определить вероятность успеха учеников и эффективность программ.

Прогнозная аналитика уже нашла свое применение в авиации. Airbus планирует использовать предиктивное обслуживание к 2025 году для уменьшения случаев, когда некоторые самолеты не могут вылететь из-за выявленных неисправностей. Другая компания, Lufthansa Technik, уже внедрила платформу, которая прогнозирует сроки замены деталей.

Таким образом, использование прогнозной аналитики на основе больших объемов данных может иметь практическую пользу в различных отраслях, увеличивая эффективность процессов и помогая предсказать будущие события и тренды.

Немного статистики

Исследование, проведенное консалтинговой компанией Accenture в 2014 году, включало опрос руководителей тысячи компаний из различных стран мира. По результатам исследования 60% опрошенных компаний успешно внедрили системы анализа больших данных и были довольны их результатами. Создание новых продуктов и услуг, увеличение количества способов получения дохода, улучшение клиентского опыта и повышение лояльности клиентов были названы участниками опроса основными преимуществами технологии Big Data.

Источник

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *